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Abstract In this paper Lhe current-voltage characlerislics and dynamic conductance are 
computed for a tunnel junction with an embedded mametic impurity which is subjected to a 
Wady magnetic field. Using a theory that does not employ the transfer Hamiltonian technique. 
the approach is based on a dynamical method described by Cini and employs &e Keldysh 
formalism. 

1. Introduction 

Recent experimental work (Gregory 1992, Manassen el al 1989) has generated a renewed 
interest in the zero-bias conductance peak of tunnel junctions with imbedded magnetic 
impurities. This zero-bias anomaly is believed to be caused by exchange scattering 
of the tunnelling electrons by local magnetic moments within the tunnel barrier, and 
various theories have been proposed to explain these anomalies (Appelbaum 1967, Gupta 
1973). These theories, however, are generally phenomenological in nature, and rely 
on decoupliig procedures of questionable validity. They employ transfer Hamiltonian 
techniques (Appelbaum and Brinkman 1970), which introduce ad hoc coupling terms in the 
Hamiltonian, and which, as pointed out by several authors (Duke et al 1972, Feuchtwang 
1974). neglect the possibility of some important scattering processes. 

An alternative formulation of the theoretical problem is to employ a rigorous microscopic 
approach, and to consider the quantum statistical system as being driven to a steady state 
by the potential applied to the tunnel junction. This is the approach taken by Feuchtwang 
(1974) and Caroli et al (1971). Cini has also proposed a technique along these lines (Cini 
1980), but differing in that his approach is time dependent. This dynamic formulation of 
the problem proves to be simple to apply, and has the benefit that no ‘pseudo Hamiltonian’ 
need be introduced in an unperturbed partitioned system. It is, therefore, closer to the actual 
experimental situation than static models. The problem can be treated with perturbation 
theory by applying the Keldysh formalism (Keldysh 1965). The results are correct to all 
orders in the applied potential, which is already contained in the unperturbed Hamiltonian. 
The solution of the problem is found within the framework of the Keldysh formalism by 
an equation of motion approach, and the magnetic impurity interaction can be introduced 
in the same manner as Feuchtwang has done in the case of the electron-photon interaction 
(Feuchtwang 1979). 

In order to discuss the current-voltage characteristics of the tunnel junction in rigorous 
quantum mechanical terms, a simple model will be developed in the following section. 
The time-dependent problem of a tunnel junction of infinitesimal width, and with a single 
embedded paramagnetic impurity in a steady magnetic field, will be formulated. The 
current will be seen to be an expression in terms of a retarded Green’s function and the 
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Keldysh retarded s-elecaon self-energy. This current will be compared with the results of 
Appelbaum-Brinkman theory in the light of the shortcomings of the transfer Hamiltonian 
approach. 

The Keldysh retarded Green’s function and the retarded self-energy will be analysed 
by summing, in the same way that Abrikosov has done (Abrikosov 1965). the leading 
logarithmic terms (‘parquet’ diagrams), using a s-d scattering perturbation. The 
Appelbaum-Brinkman transfer Hamiltonian technique rests heavily on the decoupling 
procedure that Nagaoka (1965) used to evaluate the low-temperature Kondo anomalies 
of the s-d exchange interaction. Since any decoupling of the Green’s function equation of 
motion is equivalent to a partial sum in the perturbation series (Cheung and Mattuck 1970), 
one could conclude that the Nagaoka solution corresponds to Abrikosov’s sum over parquet 
diagrams, and that there should be a correspondence between Appelbaum-Brinkman results, 
In their transfer Hamiltonian treatment, and the results of a microscopic calculation using 
sum over ladder diagrams. As Abrikosov points out (Abrikosov 1968) there is serious doubt 
of the validity of the Nagaoka decouplig scheme with impurity spins other than s = 1/2. 
Therefore, we confine the comparison to systems with impurity spins of 112. 

The sum over diagram is a bare ladder approximation, and the Keldysh s-d  vertex 
part and the s-electron retarded self-energy diverge at the Kondo temperature (Kondo 
1964). Of course, this divergence is implicit in the decoupling scheme. It can, however, 
be pushed to zero temperature, in the ladder approximation, by dressing the s-electron 
Green’s function and evaluating the vertex part, self-energy, and d spin-s electron pair 
bubble in a self-consistent fashion (Cheung and Mattuck 1970). This renormalization is 
not available to the decoupling scheme, and it is reasonable to expect that one could, in 
principle, remove the limitations of the present theory presented by the Kondo divergence. 
We see some advantage, therefore, in avoiding the transfer Hamiltonian altogether, and 
employing, instead, a self-consistent sum over all orders of perturbation. 

The tunnel current will be evaluated, by using the procedure of Chi, to obtain the system 
Green’s functions f” singularities of their Fourier transforms. Finally, the current-voltage 
characteristics of the system will be discussed, and compared with the results of the transfer 
Hamiltonian approach. 

2. Formulation 

We are looking for a theoretical description of an experiment in which the current response 
of a junction device is measured. It is assumed that the system consists of an infinitesimally 
thin device, located at x = 0, and connected with two wires extending to plus and minus 
infinity. For times f < 0, the system is assumed to be in thermal equilibrium, and described 
by a one-electron Hamiltonian, Ho. At time f = 0, a perturbation Hamiltonian H ( t )  is 
switched on. This timedependent perturbation describes the potential which causes current 
to flow. We assume that the potential goes to zero far to the left of the junction, and tends 
to a positive constant V ,  far to the right of the junction. That is, we take H ( t )  = e ( t ) V ( x ) ,  
with V ( x )  tending to a constant V, for x tending to infinity, and V ( x )  = 0, for x tending 
to minus infinity. Follonring Cini (1980). we are concerned with the calculation of the 
timeordered finite-temperature Green’s function. Defined in the standard way it is 

where T represents the time ordering, and @ are Heisenberg electron field operators. The 
angular brackets denote a thermal average taken with an unperturbed density matrix 

(A) = Tr(poA) ,q = e-@Ho/Tr(e-BHo). (7.) 
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The number density is given by 

p(*, t) = -i lim lim GT(x, i;  x’ ,  t’) 
l’+I+c X“X 

(3) 

and the current density is 

j ( x ,  t )  = - ( l / 2 m ) t , ~ ~ n + o  :,ex(VX - Vx,)GT(x, t ;  x’, t’). (4) 

In the Keldysh formalism the Green’s function becomes a matrix quantity satisfying 
Dyson’s equation 

G = g + g . Z - G  (5) 

where matrix multiplication implies integration over intemal variables, and the matrix 
quantities are 

The matrix elements are defined by a time-ordering contour integration. Since such 
quantities are not linearly independent a Keldysh transformation (Keldysh 1965) reduces 
the system of Dyson equations 

where C‘ and Ga are the standard retarded and advanced Green’s functions, and F is a 
singleparticle density matrix. Using the Keldysh formalism, we write an equation of motion 
for the retarded Green’s function 

G‘ = g‘ + g‘C‘G‘ ( 8 )  

whose Fourier time transform is 

c y x ,  x ’ ;  0) = gyx, x’;  0) + 
We write 

Using the fact that 

g- ’ (x ;  w)g‘(x, x’; 0) = S ( X  - x’)  (11) 

we write the equation of motion in the following form 
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where V ( x )  = V e ( x ) .  
We assume that the system Hamiltonian evolves to a constant final value, H', as f goes 

to infinity. As Cini points out, a thermal average over the exact single-particle eigenstates 
of Hr yields the result 

G'(k, k'; t .0) = G q k ,  rc'; t )  (13) 

where GI.' is a single-electron Green's function, calculated with the constant final-state 
Hamiltonian. The system number density and current density at x ,  and at time t ,  are 

f, is the Fermi function, and the summation sign in equation (15) implies an integration 
over the momenta which participate in the tunnelling process. 

Our task becomes the determination of Gr*f(x,x', w )  from the equation of motion (12), 
and the computation of its spatial Fourier transform. In order to solve equation (15) for the 
current density, the assumption is made that the system Hamiltonian evolves to a constant 
final value after a long period of time, and thus the asymptotic form of the Fourier frequency 
transform of the retarded Green's function is considered. Before such a program can be 
completed, however, the retarded self-energy, appearing in the equation of motion, must be 
determined. This is done in the following section. 

3. The self-energy 

The interaction Hamiltonian we will use is the same as that of Abrikosov (1965). The total 
time-independent Hamiltonian for a singlespin impurity is given by 

where N is the number of atoms, J is the s-d coupling constant, ~ k ,  Q. are the bare s-d 
electron energies relative to the Fermi level, CL, cka, c&, cdp are creation and destruction 
operators for s, d electrons and uere and 2Spp are the Pauli matrices for s, d electrons. 

As Abrikosov points out (Abrikosov 1968), the representation of the spin operator in 
terms of second quantized operators yields, for spin other than 1/2, extra 'unphysical states'. 
If, however, we take Q to be zero (Cheung and Mattuck 1970). then the average number 
of d electrons is equal to one, and the only effect of the unphysical states is to introduce a 
normalization factor of two. 

It should be noted that equation (16) is the same as that used by Nagaoka (1965) and by 
Appelbaum and Brinkman (1970). So a connection with the theory of these authors requires 
that we multiply our results by c N ,  where c is the concentration of impurity atoms. 
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Figure 1. The s-electron self- 
energy E in terms of the total 
proper Keldysh vertex pm rT 
and the Keldysh vertex y .  The 
full curves me bare selectron 
propagators and the dotted C U N ~ S  

are bare d-spin propagators. The 
Keldysh indices are not shown. 

Figure X The s-d Keldysh vertex part in lhe ladder approximation. (A) Shows the total proper 
veflex pan rT in terms of lhe proper particle-particle pan r, the proper time reversed pmicle- 
hole pm f ,  and the Keldysh vertex y .  (B) and (C) show the ladder sum and integral equation 
for r and P, respectively, in terms of y and the timereversed Keldysh vertex 7. 

The self-energy is evaluated by performing the sum and integrations represented by 
figure 1 .  The vertex part can be computed from figure 2, and used to evaluate the self- 
energy in a self-consistent manner. 

The perturbation expansion for the s-d vertex part, in the parquet series, is the sum 
of an electron-elechon part, r, and an electron-hoIe part, y ,  as shown in figure 2 (roman 
superscripts will denote the Keldysh indices). The diagrams in figure 2 represent integral 
equations, which may be translated into functions by associating with each full curve one 
of three Keldysh s-electron propagators 

g'(x, x ' ;  w )  = lim - 

1 /" p ( x ,  x';  w ) d d  
gyx. x'; 0) = lim - 

6-0- 2n -m o-w'- iS 
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Figure 3. The upper bubble is an abbreviated form of the s-d in ledion at the Keldysh 
vertex with the long form of the interaction (represented by the wavy l i e )  shown immediately 
to its right-hand side. To the right of the long form of the interaction is the mathematical 
representation of the bubble as the pmduct of the Keldysh tensor with the Dirac delta function 
and the interaction skength The lower bubble is the interaction at the time-reversed Keldysh 
vertex. 

gF(x, x'; w )  = 2g* (g' - g") = -itan(go/~)p(x, x'; w )  

g"(x, x'; w )  - kif(fo)p(x,x ' ;  w) 

(19) 

(20) 
and where p(x ,  x'; w )  is the s-electron spectral density, f ( w )  is the Fermi function, and 
,3 is l/KT. In likewise fashion, each dotted curve is associated with one of three d-spin 
propagators: 

where 

1 j m  u(x,x';w')dw' 
dr(x, x'; w )  = lim - 

6+0+ 2x --m w-o'+iS 

1 j m  u(x,x';o')do' 
da(x. x'; W )  Lim - 

6+0- 2rr o-w'- iS 

dF(x ,  x'; w )  = -itan(,3w/2)u(x, x'; o) (23) 
where u(x, x'; w )  is the spectral density of the impurity d spin. 

The Keldysh y bubble is an abbreviated form of the s-d interaction and the Keldysh 
vertex as shown in figure 3. The value (J/2N)(o,,, . Sp,~)y' i@ is associated with each 
bubble, with yijk' being a bare Keldysh vertex matrix, where the Greek subscripts are 
associated with a Pauli matrix spin index. The Keldysh vemx matrix is given by 

(W 
where uz is the third Pauli spin matrix. The vertex is a unit tensor in the i, j indices, 
reflecting that the electron, at the vertex, enters and leaves the same space-time point. A 
change in (k, k') will change the sign of the tensor, reflecting that the point at the other 
end of the d-spin propagator can reside on either the upper or the lower branch of the 
Keldysh time contour (Rammer and Smith 1986). The k-j indices of the unit tensor reflect 
the assumption that we are dealing with a delta function contact interaction between the 
s conduction electron and the d spin impurity. On performing a transformation in the 
Keldysh space, like the one described in the previous section, the Keldysh vertex function 
is written as 

yi jkp -&.S. ,,z 
'1 I k  kY 

where the tilde indicates a time-reversed impurity spin matrix. 
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Let us examine the electron4ectron vertex part first. Figure 2(B) yields 

(27) rj'Pl .?i fa" 8"(x" x'; w .  U', U"). 

The spin impurity is assumed to be located at x = 0. 
Writing r as the sum of a scalar and vector part in the spin indices (Abrikosov 1965) 

(28) f j ; M  - 0 ij:u 
ag.BalB" - r s,,.say + I r i j L k f  uaa,, . spp 

and utilizing the fact that 

yields the coupled equations 

O i ' k l  r 1: ( x ,  I , d,  mrf, mt") = - ///dxI dx2dwyim;koJ(x l )  
8N 

x g,.(xl, xz;  w)d&, xz: m"' - CO) I ~ " ' ~ P l ( x 2 .  x'; w ,  d, w"') (30) 

and 

I i j k l  J ( x ' )  .. 
///&I dxzdo y i m ; x o J ( x ~ )  w'") = -ylJ:k' + - 

2 N  2 N  r ; ( x ,  

x g m , ~ x ~ , x z ; w ~ d O p ~ l ' ~ x 2 ; w " ' - w ~  

x [ o r n j ; p l ( x z ,  X I ;  0, d, d) - 1 r n i ; p l ( x 2 ,  d; @, d, df)l (31) 

where a sum is implied over repeated Keldysh indices. Substituting (31) into (30), and 
noting that the 'r is independent of x and w' so that it can be factored ont of the integral, 
we write 'r as a cohnn vector 

where A is a 16 x 16 matrix, and where the first entry in the l- column is r'l:ll, the second 
entry is P1], etc. 

Before computing the elements of A, we note that they are sums of terms of the form 

[I[ dx dx'do J(x)gij(x,  x'; w)dkr(x. x ' ;  w' - w )  (34) 
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where the spechal density of the s conduction electron, p ( x ,  x'; U ) ,  is assumed to be confined 
to band of width 20 .  Evaluating g' with this density we find 

q is infinitesimal and so is infinitesimal. Since gll = 0, only terms involving 
g22 = gF = -ip(x, x')  tanh@o/2) are considered when evaluating the elements of A. 

The spectral density of the impurity is a delta function, and on evaluating the frequency 
integration in equation (34), we see that the number of terms needed to evaluate each 
element of A is reduced from sixteen to two. These terms are 

ZI(W') = J(x )gz&,x ' ;  u)dl~(x,x';u'-w)dxdx'dw (36) 

and 

We introduce a local impurity density of states and assume that 

u(x ,x ' ;u)  =u(x' ,x ' ;u)=u(x' :u)  

which obey the sum rule 
m 

u(x';  U)&' = u(u) = S(u - Ed) = S(u). L 
Evaluating equation (36) using equations (38) and (19), we find 

zl(o) = ~ ~ ~ ~ d x d r ' d u J ( x ) g ~ ( x , x ' ; ~ ) d ~ ~ ( x , x ' ; o ' - u )  2N 

= z(o) . P J  
N -tanh - - I -  

4 N  p J  (???) (39) 

where we have used the assumption that p ( x , x ' )  = p, a constant. The remaining term 
needed to evaluate the elements of A is computed in a similar fashion, and found to be 

z&) = dx dx'dw J(x )g&,  x'; u)d&, x';  U' - o) 
2 N  

- 4 N  

We now evaluate the elements of A. Substihlting equation (32) into equation (33), and 
solving for the column vector 'r, we find in particular that 

I 2x21 ( x .  U )  = r ( x .  o) = (J /2N)&(x) /11  + Ah)] l r12 : I l  

' r ' Z p ( x ,  U )  = lY22:12(x, U )  = (J /2N)S(x) / [ l  + A*(u)] (41) 
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where 

A(w)  = z(oJ) [~  - :z(o)~. (42) 

Similarly, we evaluate P using figure 2(B), and find that 
I -12,11 I -22;21 ( x , w )  = ( -J /2N)A(x)A*(o) / II  - IA(W)I*] 

1F1z:22(x, w )  = 1?22:12(x, O) = ( - J / 2 N ) 6 ( x ) A ( w ) / [ l  - IA(w)I2]. 

r ' ( x ,  w )  = r 
(43) 

The conduction electron retarded self-energy may be obtained from the vertex part, as 
shown in figure 1. From the figure, we see that the outgoing spin must always be the same 
as the incoming spin, and hence, following the analysis of Cheung and Mattuck, the spin 
sum for figure 1 is 

X j j ( 0 , x ; w )  = -- J s ( x )  ///~dx'dx''dw'd"'S(x') 
2 2N 

yi';"n'gfm(x', x", w')dn,,(x', x " ;  w" - w')dno,(X', x"; W" - O) 
nn'oo'rm 

1). (46) [ ~ ~ o o ' ; m j ( ~ r ~ )  + lfo&"(wff) - (j/2N),,oo';mj 

Noting that terms in the sum involving d22 integrate to zero, we find that 

C,Z(O, x ;  w )  = zyo, x ;  0) 

- - ?'s(x, / / / I  dx'dx"do'dw"6(x') 
2 2N 

Also 

&.2(0, x ;  w )  = 0 = -- J s ( x )  //I/ dx'dx"dw'dw"S(x') 2 2 N  
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We subtract equation (45) from equation (46), and perform the spatial integration to find 

+ 2' jD Im dw'dw"6(w" - w')S(w" - w )  tanh@o'/2) 
-D -m 

[lr12:ll(wn) + i ~ i 2 : i l ( w t ! )  + lr12:zz(wr~) + lfl2:" N 
(w ) - 11). (49) 

These integrations are elementary, and on dividing Zr into its real and imaginary parts: 

E'(0, x ;  w )  = Re Z'(0, x ;  w )  + i Im E'(0, x ;  w) (50) 

we find 

ReE'(0, x ;  w )  = ",pJ26(x)/8nNZ)Ulog(DZ/[w2 + (2KT)21)JI (51) 

and 

Im Z'(0, x ;  w) = 2 8nN2 [ Z  -log (wZ+(ZXT)*  
3 p J z 6 ( x )  I 

x (A(u) + A*(w) + 2)(1 - IA(w)lZ) - (A(oJ) + A'(m)) 

x (A@) + l)(A*(w) + l)[(A(o) + l)(A*(w) + 1)(1 - IA(OJ)~')]-~]. (52) 

In the next section we shall use this retarded self-energy to evaluate the retarded Green's 
function and its first spatial derivative. Having obtained these, we shall be able to express 
the current density of the junction, a function of the applied potential, in terms of an integral 
equation. 

4. The current 

On performing the X I  integration in equation (12), and taking the spatial Fourier transform 
with respect to x ' ,  we find 

1 1 1 
G(0, q ;  w )  = - &-/o - ~ ( w )  - v + a  ,/w - xr(w] - n 

where 
7 

(53) 
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(54) 

The superscript on G has been dropped, and it is understood that we are dealing with the 
retarded Green's function. 

We shall consider the current of electrons with positive momenta, and seek the Fourier 
frequency transform of equations (53) and (54) in an asymptotic form. This is accomplished 
by the method of generalized functions, where the Fourier transform is approximated in the 
vicinity of its poles (Lighthill 1959). A direct approach is to recognize that G(0, q,  w )  can 
be approximated by 

G(O.4; 0) g(q,  m)/(@ - 00) (55)  

where w is a complex constant, and g(q, w )  has no poles for the momenta being considered. 
The Fourier transform of this equation (55) is, asymptotically 

io(- I m q )  sgnOmwo)e-'*'g(wo). 

For q > 0, the only pole of G(0, q,  w )  is such that 

q = &JX. 
We expand G(0, q;  w )  about a': 

We get 

and 

where 
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and w is a complex variable: 

The current is, from equation (IS), 

R2 = J(Rewo -Re F ( w 0 )  - V ) 2  + (Imm - Im Cr(o~))z (66) 

81 =tan-'[(Imwo -ImC'(wo))/(Rewo-Re~:'(wo))J (67) 

0, = tan-'[(Imoo - h Z'(wo))/(Rewo - Re Zr(o0) - V ) ] .  (68) 

As a steady magnetic field is applied perpendicularly to the direction of the electron 
current the energy specmm E of motion (neglecting spin splitting) coincides with the 
spectrum of the linear oscillator and consists of discrete levels 

where e and m are the electronic charge and mass, c is the speed of light, and H is the 
magnetic field. At H = 0, the allowed tunnelling states are uniformly distributed in the 
Fermi sphere and the sum in equation (64) is over these momenta, with corresponding states 
of energy between E F  and E F  + V .  

With an applied steady magnetic field the discrete levels (n  + ;)hoc then become the 
allowed values of energy E related to the electronic motion. The momentum q relating to 
a level with a quantum number n is found by the correspondence principle, which can be 
written as 

(hq)2/2m = (n + $)hoc 

whence 

4. = J(2mwc/h)(n + 4). (71) 

The sum in equation (64) is now over qn with the first n determined from 

EF = hrsr + $)hoc (72) 

and the last n determined from 

EF + V = (nl,, + ;)hoc. (73) 

Hence, nfirsl is interpreted to be the closest integer to the value EF/(hoc) - $, and nlaSr the 
closest integer to the value (EF + V)/(hw,) - f .  
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5. Discussion 

I-V curves were computed numcrically using expression (64). In figure 4 we present a 
current curve and the dynamic conductance, dl/dV, derived from it with KT = 0.06 meV, 
and no applied magnetic field. An antiferromagnetic coupling constant with the value 
J p / N  = -0.10 was used for computing these curves in order to come into touch with 
the Nagaoka decoupling procedure; this is the value for J p / N  which Nagaoka used in his 
paper (Nagaoka 1965), and from that paper the critical temperature at which instabilities in 
the decoupling procedure set in is determined from 

KT, = (1.14D)e-N’’’’p. 

A value for D of 1.4 eV was used for computing our current curves and we find that the 
temperature below which the Appelbaum approach is expected to break down is 0.07 meV. 
We infer therefore that figure 4 shows the current and conductance below the Nagaoka 
critical temperature. This corresponds to the so called ‘tight binding’ region referred to in 
Gregory’s paper (Gregory 1992). 

a 
a 0 . 2  a .  4 

V o l t a t e  (“0 
Figure 4. The current. curve a, and the variation of 
the conductance, c w e  b, with applied bias voltage. 
computed for the  case where conduction electrons and 
impurity electrons are intemting antiferromsgnetically 
with no applied magnetic field, with the parameten: 
KT = 0.06 meV, J p I N  = -0.1. and D = 1.4 eV. 

a 

Y.3I t .de  (my) 

F i p  5. Variation of dynamic conductance with 
applied bias voltage with different applied magnetic 
fields. Curves a b, c and d correspond to Zeeman 
energies with 6 = 2 and magnetic fields of X =O T. 
3 T, 5 T, and IO T, respectively, and with the 
parameters: KT = 0.11 meV, J p l N  = -0.1, and 
D = 1.4 eV. 

In figure 5 we present conductance curves computed with various applied magnetic 
field intensities, and with KT = 1.14. In this case we are well above the Nagaoka critical 
temperature in a region where the transfer Hamiltonian technique is expected to be valid. 
The characteristic evolution of the line shape with increasing field strength is clear from this 
figure, and compares favorably (at least qualitatively) with Gregory’s experimental results 
(Gregory 1992). It is not apparent from these plots as to whether or not a central peak 
develops, but it is quite clear that there is the characteristic splitting of the anomalous 
conductance peak. The bias voltage of the peak maximum is g p g H  (assuming g = 2). and 
the height of the peak decreases with increasing magnetic field. These features are similar 
to the results of a transfer Hamiltonian calculation (Shen and Rowel1 1967). 
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The band width we have used is 1.4 eV, and this parameter corresponds roughly to the 
cut-off parameter in the Appelbaum theory, which requires a much smaller value than one 
would expect from an estimated variation of the density of states of transition metals near the 
Fermi surface (Appelbaum 1967). In the present formulation D is not a phenomenological 
fitting parameter in the following sense: D obtains a finite value reflecting the fact that the 
localized d-spin impurity orbital has a limited spatial extent of non-negligible amplitude. 
We note that equation (12) holds when the motion in both wires is free; in which case 
D=oO.  

For the sake of simplicity, we have resbicted our discussion to a one-dimensional 
junction. The amount of algebra required to secure a closed expression for the spatial 
Fourier transform of equation (12) increases considerably when extending the analysis to 
three dimensions. The junction width has been assumed to be infinitesimally small, but the 
effect of junction width can be introduced by making an appropriate modification to the 
perturbing potential, V ( x ) .  Also, we have not considered the electron-phonon interaction; 
it may be introduced, in a simple manner, by adding a retarded self-energy term to the 
Hamiltonian, corresponding to the Migdal approximation, and using the Einstein phonon 
density of states to evaluate phonon propagators. 

Finally, we have not estimated the effects of impurity concentration. A correct procedure 
would be to average the Hamiltonian over a random distribution of impurity positions. 

In conclusion, I have found that the I-V characteristics of a tunnel junction, with 
imbedded magnetic impurities, can be computed from a first-principles analysis using the 
Keldysh formalism. The results are qualitatively similar to phenomenological theories, but 
the analysis provides a flexibility, not found in transfer Hamiltonian schemes, for modelling 
conduction electron interactions with bound spins. The time-dependent technique of Cini 
provides a broad approach to tunnel junction behaviour, which is free of arbitrary fitting 
parameters. 
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